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SUMMARY 
The work concerns cnoidal and solitary wave solutions of the Boussinesq equations in the context of finite 
difference methods. The existence of permanent wave-forms is discussed and approximate solutions are 
found for one particular discrete formulation by perturbation techniques. These techniques can be applied to 
most difference and regular element discretizations of equations describing weakly non-linear and dispersive 
waves. No proof of convergence of the perturbation expansions is established, but the appropriateness of the 
solutions is confirmed through comparison with the results of computer simulations. From the perturbation 
series it is found that the phase speed of solitons is useless for the evaluation of numerical methods and that 
asymmetries in the discrete equations may ruin the soliton solution. The availability of a discrete closed- 
form solution is especially important for discussions concerning the existence and accuracy of permanent 
wave-forms with oblique orientations relative to the grid. 
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1. INTRODUCTION 

One of the most instructive ways of evaluating a numerical method is to investigate its capability 
of reproducing simple analytical solutions. Often this involves a large number of test runs on 
a computer with uncertainties concerning code errors, limitations on grid resolutions and the 
introduction of unwanted boundary conditions. However, in many cases 'manual' analysis of the 
methods may provide an attractive alternative. For wave problems the most important example 
is Fourier analysis which is applicable to linear equations with constant coefficients. Unfortu- 
nately, such analysis is seldom carried beyond the establishment of dispersion relations and 
simple stability criteria. Nevertheless, classical methods of analysis, traditionally applied to 
differential equations, often work equally well with discretized problems. Thus discrete solutions 
of closed form may occasionally be derived for problems involving coupling between modes, 
non-trivial boundary conditions or non-linearities. Such solutions are of great value both for 
evaluating numerical methods and for the validation of computer programmes. The solutions 
could be viewed as analytical solutions to discrete problems. However, we will avoid such terms 
and reserve the notation 'analytical' for the direct treatment of differential equations. In the 
present paper we will study numerical representations of some simple solutions of the non-linear 
Boussinesq equation. 

For surface gravity waves in shallow water there are two important non-linear solutions of 
permanent form, namely the soliton and the periodic cnoidal wave. Both are important in the 
context of complex wave patterns as well as representative of non-linear waves in their own right. 
Particularly the soliton has received appreciable attention in the literature. The remarkable 
collision properties of these non-linear waves have been studied in a series of papers through the 
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last decades, some of which involve numerical integration. Also the propagation of solitons over 
shelves and their run-up on vertical or inclined planes have been extensively studied (see e.g. 
References 1-6). These works do not focus exclusively on the peculiar properties of the soliton 
solution itself, but also on features concerning non-linear waves in general. An example is the 
question of non-linear modifications to Green’s law for amplification in shoaling water. In recent 
years the topic of non-linear ship wave patterns in shallow water has become popular. Particular 
attention has been paid to the upstream radiation of solitons that has been observed in the 
transcritical regime.7-’2* 30 The non-linear shallow water theories also describe ocean waves in 
coastal regions and their impact on harbours, etc. These are the motivation for works such as 
References 13- 16. 

Even though soliton and cnoidal wave solutions are also widely used for the validation of 
numerical techniques, the problem of finding numerical counterparts to the analytical solutions 
has hardly been addressed. In the limit of very refined grid resolutions one would always expect to 
reproduce the solutions fairly well, at least for moderate time intervals. Still, many problems 
involving slow evolution, refraction, interaction, etc. of solitons will be very sensitive to even 
extremely slow numerical growth/damping or disintegration of the wave-forms. Besides, such 
cases generally require the discretization of large domains with corresponding limitations on the 
grid increments. As a consequence, the results of the computations may be confused or even 
dominated by spurious effects. 

The succeeding sections will contain approximate closed-form solutions for solitary and 
cnoidal waves moving in a finite difference grid. The study of the latter wave type will be confined 
to the Stokes wave limit (small Ursell numbers). Cases of intermediate and large Ursell numbers 
can probably be treated analogously as for the soliton, but we believe that the addition of such an 
analysis will give but little new insight of the numerics. The work will be concentrated on 
a particular shallow water formulation and numerical techniques that have been used previously 
by the author. Nevertheless, the principles of the analysis will apply equally well to most finite 
difference and finite element discretizations on a regular mesh. 

2. FORMULATION 

The equations will be formulated in a co-ordinate system with the horizontal axes Ox* and Oy* 
in the undisturbed water level and the vertical axis Oz* pointing upwards. The asterisks indicate 
dimensional quantities. The fluid is confined to -h* <z* <q* and the depth-averaged velocity 
and velocity potential are denoted by v* and d* respectively. We introduce a characteristic depth 
ho, a characteristic horizontal length I ,  amplitude aho and dimensionless variables according to 

z*=hoz ,  x*  = lx,  Y*=lY, 
t *  = I(gh,) - l ’ Z t ,  

4* =al(gho)1/2c$, v* = a(gho)’ /2v,  (1) 

?*=aha?, 

where g is the acceleration of gravity. The x- and y-components of v will be referred to as u and 
u respectively. In various sections we will use different horizontal length scales 1. Regarding the 
discussion of relative errors and dominant balances in the equations, the appropriate choice for 
1 is a typical wavelength. This definition is used in Sections 2.1 and 2.2 and in the formulation of 
the perturbation expansions in the succeeding sections. To make comparisons easier within the 
paper as well as with other works, we also introduce a reference scaling based on using the depth 
as both horizontal and vertical length scale. This leads to the following definitions of 2,$, f and 9: 

R = x*/ho,  p = y*/ho,  E = (gh0)1’2 t*/ho,  t j  =?*/hi). (2) 
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Scaling according to the above set of relations will be used for presenting the final results, both in 
expressions and figures, and for the description of computer simulations. 

In the context of vertically integrated theories such as the shallow water theories the use of the 
phrases ‘three-’ and ‘two-dimensional’ may be ambiguous. We prefer to use the phrases in the 
physical sense, which means that a three-dimensional wave is one that involves motion in two 
horizontal directions in addition to vertical elevation. Thus the integrated equations describing 
a three-dimensional wave contain only two space variables. 

2.1. The Boussinesq equation 

For long waves in shallow water, weakly dispersive and non-linear theories can be established 
through expansions in the small parameters a and E = h i / l 2 ,  where 1 is a characteristic wavelength. 
The resulting equations may be cast into a variety of forms according to the choice of variables, 
extra assumptions, etc. In the subsequent sections we will mainly be concerned with one 
particular version of the Boussinesq equations. Other important shallow water equations 
are the KdV (KortewegdeVries) equation, which describes unidirectional waves, and the KP 
(Kadomtsev-Petviashvili) equation, which is a weakly three-dimensional generalization of the 
KdV equation. Derivations and discussion of Boussinesq equations are given in many textbooks 
and articles. References 11 and 17-19 are of particular relevance to the present work. 

In the case of constant depth the Boussinesq equations expressed in terms of the depth- 
averaged velocity potential read 

q, = - V  * { (1 + aq)V4}  +O(aE), (3) 

~ , + f a ( V ~ ) 2 + q - ~ E V 2 ~ , = O ( & z ,  me). (4) 

In three dimensions this set is solved numerically in References 11 and 16. Recognizing V4 as v, 
the average horizontal velocity, the equations may be rewritten to give 

which is another formulation that is frequently used. 

2.2. The numerical procedure 

We will concentrate the study on the numerical techniques discussed and used in References 11, 
15, 19 and 20. In the present paper we will only recapitulate the methods briefly, including some 
useful nomenclature. 

The approximation to a quantityfat a grid point with co-ordinates (PAX, yAy, KA~) ,  where Ax, 
Ay and At are the grid increments, is denoted To improve the readability of the difference 
equations, we introduce the symmetric difference operator 6, by 

and the midpoint average operator ( -”) by 

(f”)E’, = 3(fBo1,2, y +f i? l ,Z,  7). 

Difference and average operators with respect to the other co-ordinates y and t are defined 
correspondingly. We note that all combinations of these operators are commutative. To abbrevi- 
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ate the expressions further, we also group terms of identical indices inside square brackets, leaving 
the super- and subscripts outside the bracket. These notations are adopted from Reference 20. 

In Reference 11 the set (3) and (4) was discretized exclusively by centred differences and 
averaging. Hence both the continuity and the Bernoulli equation gave difference equations that 
were implicit in space. To decouple the implicitness in the two equations, a grid staggered in time 
was used. This also improves the accuracy significantly for particular combinations of grid 
increments. The difference equations read 

[6,q = - 6, { (1 + atjx')6,4} - 6, { (1 + atjyt)6,4} + vCl] j:: ' I 2 ) ,  

[6,4 + T +  r/ -3&(6,2 +6,2)6,4 + v c 2  = O ]  j:), 

(9) 

(10) 

(1 1) 

where 
[ i ' " " ' = ~ a { ( 6 , ~  -x ) 0 -  1/2)(6,p)(n+ 112) +(a p-0- 1 / 2 ) ( 8 y ~ ) ( n +  1 / 3 > l i ,  

and vC, , vC2 are numerical correction terms that remove second-order errors from the hydro- 
static parts of the equations. Thus the overall discretization error is O(Ax', Ay', At') for v =O and 
O(&Ax', aAx2,  Ax4,  CAY', uby', . . .) for v =  1. The correction terms read 

C1= -&(Ax2+Ay2)b;dy?4,  (12) 
C2 =&(Ax2 - At ')6,26,4 + f i ( A y 2  - AtZ)6,2 6,4. (13) 

When v is set to zero, it is shown in Reference 19 that the difference equations (9) and (10) are 
equivalent to the following representation of (6) and (5): 

[6,r/= -ax{(1 + a i j X t ) u } - 6 , { ( 1  +aij"')v}]j:~"'),  (14) 
[S,u +6,T= -6,q +3&(6,2 +S,2)Stu=0]l.! 112, i ,  (15) 

[6 ,v+6,T= -6,q +$&(a: +6,2)6,u=oll:~+ l p ,  (16) 

(17) [ T ( " ) = f a { ( u x ) ( " - l / 2 ) ( u x ) ( " + 1 / 2 )  -Y (n-1/2) Y ("+I/') + ( u  1 (6 ) >Ii,j- 

These are the constant-depth versions of the difference equations in References 15 and 20. 

3. CNOIDAL WAVES 

It is well known that the non-linear KdV or Boussinesq equations possess a family of plane and 
periodic wave solutions of permanent form, generally referred to as cnoidal waves. The solutions 
are governed by two parameters, the amplitude and wavelength, that determine the shape and 
frequency. A thorough discussion of cnoidal waves is found in Reference 21. For small ratios a/& 
the cnoidal wave solution coincides with the shallow water Stokes wave. The latter solution is 
found by expanding the field variables and the frequency simultaneously in powers of a. The 
series for the frequency is achieved by requiring the expansions for the field variables to be 
consistent and uniformly valid in space and time. Details on the Stokes wave expansion are given 
in Reference 22. 

Assuming no y-dependence and denoting the wave number and frequency by k and w respect- 
ively, we may define the Stokes wave expansion according to 

q =  r,(O)+ar,(O)+. . . , (18) 

4=Rt+Fx+ct ,o(0)+act , l (O)+.  . . , (19) 
w = 0 0 + a 0 1 + a 2 w 2 + .  . .=k(co+acl+a'c2+. . .), (20) 
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where 8 = k x  - cot and the functions 5, Oj are periodic. We will choose a as the amplitude of the 
first harmonic of q, which means that G(8) = cos 8. A similar expansion can be applied to the 
difference equations (9) and (10). We shall not discuss all the details of the tedious and rather 
straightforward arithmetic, but we note that the calculations are substantially simplified by the 
following observations and definitions. 

(a) The horizontal length scale is chosen according to I =  l/k*, which means that k=  1. A new 

(b) We define a, =(2/Ax)sin(Ax/2), m,=cos(Ax/2) and a,, m, correspondingly to obtain the 
time variable is defined by T=UX We note that 6,F(B)=o6,F(B), where A t = o A t .  

relations - 
6 ,  sin 0 = a, cos 8, sin 8” = m, sin 6, etc. 

(c) It is easily shown that 

6,  sin(2B) = 2m,aXcos(28), sin(2B)” = (2mf - l)sin(28), etc. 

Naturally, in the limit Ax, AT+O the expansion becomes identical to the analytical one. 

3.1. The linear harmonic solution 

Inserting the series (18)-(20) in (9) and (lo), we obtain to leading order 
2 a, yo = cos e, Qo=Bosin8, c,2= 

a, (1 ++aaf>’ 

where Bo =coa,/uf and E‘=&+$v(At2 -Ax2). The expression for co is naturally the discrete linear 
dispersion relation. By restoring the grid increments into the right-hand side and adopting the 
scaling according to equation (2), we obtain the stability criterion 

4 
At̂ ’ < A i 2  +- 

3-v 

and the leading numerical dispersion terms according to 

d = k^{ 1 - iff2 - ~ ( 1 -  v) ( ~ 2 ~  - AP ) P  + 0(14)}. 
We observe that leading numerical error terms enter the expression to the same order in k  ̂as the 
dispersion terms. This is relevant for the choice of scaling indicated by equation (37) in Section 4. 

3.2. The superharmonics 

the averaged surface elevation and horizontal mass flux are prescribed to be zero, we find 

where 

To the next order we have to apply additional conditions to obtain a unique solution. When 

c1 =o, r, = A cos(2e), Q 1 = B 1  sin(28)+RlzfFlx, (24) 

R, =&zfmf(2m:- l), 

Fl =*go. 
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It is emphasized that the appearance of the coefficient R1 is related to the choice of the constant 
in the Bernoulli equation. Letting AT, Ax+O, we find aA,+O(as-').  Hence the expansion 
is meaningful only if which implies that the Ursell parameter a/& has to be small. 
Assuming O ( A X ~ A T ~ ) <  O(E),  the expression for A ,  can be expanded in orders of Ax2,  AT' to give 

3 + k ^ [ $ + & {  (8v-6)Af2 - (8v+6)Ag2}  + O(AA4, Af")] 
C2 (4 + (1  - i v ) (Ad2  - A i 2 )  + 0 ( A g 4 ,  Af")} 

A1 = 

Noting that Ad = Af = 0 corresponds to the analytical (non-discrete) case, we observe that, 
regardless of the wavelength, we must require A& A f @  1, or v =  1 and A a = A f ,  to reproduce 
A l  properly. In dimensional co-ordinates the first requirement corresponds to A x *  @ h*, etc. We 
note that the correction terms do not improve the value of A l  markedly. 

4. THE SOLITON SOLUTION 

The shallow water solitary wave is a single-crested wave of permanent shape with exponentially 
decaying tails extending to infinity. The propagation speed is slightly larger than that for infinitely 
long linear waves. Solitary wave solutions are inherent in the weakly dispersive and non-linear 
theories corresponding to Boussinesq or KdV equations. Strongly non-linear solutions have been 
obtained by perturbing the full inviscid set as in References 23, 24 and 32. The solitary wave 
solution has a large amount of interesting features and mathematics attached to it. Most 
remarkable is maybe the particle-like collision properties which have motivated the soliton name. 
Within the weakly non-linear and dispersive approximation, solitons regain their original shapes 
after interaction. A survey on the theory of shallow water solitons can be found in References 21 
and 25. In the present paper we will not attempt to discuss the performance of numerical methods 
in relation to the interaction behaviour, etc. of solitons. Instead we will confine ourselves to the 
more basic question of the existence of single-crested waves of permanent shape. Still, we will use 
the term soliton also for the discrete solutions. 

As demonstrated in Section 3, the Stokes wave expansion for the difference equations was, at 
least principally, as simple as for the differential equations. This is due to the existence of Fourier 
transforms that are essentially identical for the discrete and the non-discrete case. However, the 
description of a general wave of permanent form moving in a grid is less straightforward, and the 
existence of such solutions is far from obvious. 

We will start with a brief look at a special case for which the concept of a permanent wave-form 
carries directly over to the discrete description. When the plane permanent wave-forms 
r]  = Y(x - ct), 4 = O ( x  - ct) are substituted into the differential equations (3) and (4), we obtain 
a set of ordinary differential equations in the composite variable 19 = x - ct. But, even though we 
assume no y-dependence and prescribe r]?) = Y(iAx - cjAt), etc., the partial difference equations 
will not degenerate to ordinary ones. To achieve an equation that involves single indices only, we 
must assume cAt = Ax, which means that the wave profile moves exactly one space increment per 
time step. This is an awkward requirement, particularly since c generally has to be found as a part 
of the solution. Anyway, if we assume cAt = A x ,  define O j = (  j -  y)Ax+cyAt and invoke 

(ei+n+1/2) (30) ($p+ 112) = @ ~ 1 =  Y(Oi+n), 

in (3) and (4), we obtain 
[cY=( 1 + a  Fee) u ] ~ ,  

[cU - f a r -  Y - i c  { a  + ~ v A x 2 ( c 2  - l)}  S," U =0I i ,  (32) 
where we have exploited the fact that U and Y vanish at infinity and where U and Tare defined 
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The ordinary difference equations (31) and (32) together with the conditions at infinity define 
a non-linear eigenvalue problem for c. This problem is probably solvable by a combination of 
asymptotic approximations at infinity and a shooting technique. Thus a soliton solution is likely 
to exist. However, the existence of a solution for this particular choice of grid increments is not 
a reliable indication for the existence of such solutions in general. We will not pursue this case any 
further but instead turn to another and more general approach. 

Provided cAt/Ax is a non-rational number, all grid points are associated with different values 
flfj,=iAx-cjAt and the definition of a permanent wave-form is not trivial. A simple definition is 
to link the existence of a solitary wave to the existence of an analytical function Y(8) which 
satisfies the relation Y(@)) = r f )  for all i and j .  If Y exists it is uniquely determined because the set 
{e?} always has accumulation points.* When an analytic function is substituted in (9) and (10) or 
in (14)-(17), all differences can be replaced by series of derivatives that are found by Taylor series 
expansions. Retaining only the leading discretization error terms, we will then find approximate 
solutions to the resulting differential equations. This corresponds to the first few steps of 
a perturbation procedure which in principle can be carried out to any order, thereby indicating 
that discrete solitary wave solutions do exist. However, no proof of convergence of the perturba- 
tion series is established. 

4.1. The perturbation expansion 

When the dependent variables in the difference equations are regarded as grid point values 
of analytical functions, we may apply Taylor series expansion. Expanding the quantities in (9) 
and (10) about (iAx, jAy, (n  +&)At)  and (iAx, jAy, nAt) respectively, we deduce the differential 
equations 

At2 At4 
24 1920 tlt + - tlm + - %"I = - { (1 + a t l M x ) x  + D ,  - ((1 + atl)4y}, + D,) 

V 

+ O(aAx 2iAy2jAt 2k,  Ax "AyZJAt  2 K ) ,  (34) 

-(:+;(At2 - A y 2 )  4yyf+ R(,) + O(aAx2iAy2iAt2k, EAxZiAy2jAt21r, Ax2'Ay2'AtZK)=0, (35) ) 
where i + j + k = 2 , l + J + K = 3  and 

Ax Ax4 Ax At 
4 x )  = - ~ 4xxxx  - 360 4xxxxxx - - a { h 4 X ) X X X  + ( V 4 X X X ) X  + 3 (?xx 4 x ) x  1 - 8 (Vtt  4 X ) X  9 12 24 

* Accumulation point in the usual mathematical sense: a point for which we may find arbitrarily close O!n. 
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Expressions for D(y) and 
seek permanent wave solutions as functions of the composite variable 

are obtained simply by replacing x by y in the above definitions. We 

(36) 

a=&, AX = 0 (a), Ay2 = O(U), At2 = O(U), (37) 

d = k(x cos $ + y sin $ -ct) 

where + is the angle between the x-axis and the direction of wave advance. Prescribing 

we may assume the expansions 

q =  Y(e)= &+cry, +a2 &+. . . , 
U ~ ~ ~ / ~ X = U , + U U ~ + U ~ U ~ + .  . ., 
k = 1 + u k 1 + a 2 k 2 + .  . ., (40) 

c=1+ucl+u2C2+.  . . .  (41) 
Equation (37) corresponds to rather large grid increments, namely Ax* - h*, etc. However, the 
resolution often has to be very coarse in three-dimensional simulations. According to References 
11 and 19, sufficient accuracy may still be achieved by the introduction of simple correction 
terms, or sometimes by choosing an optimal time step. The simpler case of a more refined 
grid will be discussed later. The expansion of k is necessary because the shape and length of 
the soliton, like the speed of propagation, depend on the amplitude. The zeroth-order term 
of k can be chosen arbitrarily without loss of generality. At 8= f o o  we require 
Y = Y ’ = Y =  . . . =  U = U ’ = U ” =  . . .=  0. A definition of u can be given by m a x & = l .  This 
definition is not precise unless we add the condition that solutions of the same mathematical 
form as & must be excluded from higher-order terms. Substitution into (34), (35) and integration 
of the former give 

CY=(l +aY)U+Uk2(y,  U“-y2c2 Y )  

+a2 ( K 1  u””- K 2  Y””+ K 3 (  Yu)”+ K 4  Y” u+ K 5  Y U ” }  + 0 ( U 3 ) ,  (42) 
cu -3. u2 - Y -  a(3 + p- 73 c2)ck2 u” - a2 { K6 u”” + K, u u” - K s  (u’)’ } + 0 (a 3, = 0. (43) 

The coefficients are given by 

At2 e2 V 
y2 = 7 3  = - , y1 =-, p =---(At2 - Ax2 cos2 + - Ay2 sin2 +), 

24a 12a 12a 

e4 v 
360u2 144 

K 1 = -  +-(Ax2+Ay2)(Ax2cos2$+Ay2sin2+)cos2+sin2+, 

e2+At2 At2 
1920a2 ’ 24u 8u ’ 4u 

K g = - ,  
e2 

K 3 = K 5 = - ,  K 4 = -  
At4 

K 2  =- 

V 
- K ~  +- {Ax2(At2 -Ax2)cos4 $+AyZ(At2 -Ay2)sin4 I)}, 2e2 +(3p+ l ) A t 2  

72u 144 

2e2 + 3At2 
K 7  = 

12u ’ 

where e2 = Ax2 c0s4 $ + Ay2 sin4 $ and e4 =Ax4 cos6 $ +Ay4 sin6 $. The distinctions between 
coefficients with equal values are kept for generality. Invoking the series expansion and requiring 



FD REPRESENTATIONS OF NON-LINEAR WAVES 679 

where R o = H o = O .  This means that, after having computed q- l ,  Uj-l, we find 5,  U j  by solving 
the set 

(47) Rj+ 1 + H j +  1 =O. y. - u .  = R . 
J J J ’  

The latter equation is a solubility condition for the next order. 

4.2. The zeroth-order solution 

For the leading terms of the expansion we obtain U o =  & and 

20 Y; + (3 Yo - 2c1)  yo = 0, 

o( Yh)Z+(4 r, -cl) Y,’ =o. 

(48) 

(49) 
The above equation together with (48) will be used to remove derivatives of from the 
right-hand side of the higher-order equations. This will work as long as the sum of the number of 
derivations applied to all factors of each term is even. To avoid negative solitons with negative cl, 
we have to require o > 0. Anyway, this turns out to be a much weaker condition than the linear 
stability criterion (22). From the above equation and the constraint max Yo= 1 we find 

where o = i ( i + p  + y1  - y 2  - y 3 ) .  Integration of Y, times (48) immediately gives 

c1=3, (50) 

A few important observations should be made at this stage. We note that to order a the 
propagation speed c is independent of the discretization whereas the shape of the soliton is not. In 
fact, even an erroneous factor before the dispersion term will not alter c to this order. Therefore 
considerations on propagation speeds of solitons alone should never be used to validate 
numerical methods. 

The quantity 0 has a simple interpretation. If the non-linear term of (48) is omitted, the 
equation must describe linear solutions of permanent form, which means sinusoidal waves. In this 
case the perturbation parameter a has to be regarded as a measure of wavelength instead of 
amplitude. To get a unique definition of the parameter, we demand that the dimensionless wave 
number equals unity and find c 1  = -0, which means 

~ = 1 - o ( k * h ~ ) * + O ( ( k * h , ) ~ ) .  (52) 
The analysis in the present section has so far been concerned only with the difference formblation 
(9) and (lo), alternatively (14) and (15). However, any consistent and regular discretization of the 
Boussinesq equations will lead to a zeroth-order solution of the form (51) with o having the above 
interpretation. A consequence is that the zeroth-order solution for the discrete solitary wave can 
be deduced from the linear hydrostatic dispersion relation. (The ‘analytical part’ of o is always +.) 
This is different for KdV or K P  equations which are expressed in terms of a composite variable 
x - t in addition to a slow time variation. 

We note that to the present order all numerical errors disappear when the correction terms are 
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retained ( v  = 1) or if At2 = Ax2 C O S ~  $ + Ay2 sin4 $. In these cases the difference equations are 
accurate to the same order as the Boussinesq equations provided that (37) holds. 

4.3. The jirst-order solution 

Most of the important features of discrete solitons are revealed by the leading terms alone. In 
fact, the O(aE, E ' )  error terms of the Boussinesq equations themselves would enter the perturba- 
tion scheme at the next stage. Still, we will advance the perturbation expansion one step further to 
indicate the existence of solitary wave solutions of the set (9) and (10). Besides, it is essential for the 
verification of numerical methods and programmes to have as precise descriptions as possible of 
both analytical and numerical solutions, even though the accuracy of the basic theory is limited. 
Rewriting R 1 ,  R 2  and H 2  from equations (45) and (46), repeatedly using (48) and (49) to remove 
derivatives of r, and finally eliminating U1, we obtain an equation of the form 

L( &)= 20 Y; +(3  r, - 1) & =a& + b Y i  +fY,", 

a = 2 c z - 2 k i - 4 +  1 I 2 0  - 1  (71-+72 + ~ 3 ) + t 0 - ~ ~ 2 ( Y i - - Y z ) - t d - ~ ( K i - K ~  +&), 

(53) 

(54) 

(55)  

(56) 

In contrast to (48), equation (53)  is linear, but inhomogeneous, and has variable coefficients. 
However, by differentiating (48), it is immediately realized that V =  Yb is a solution of the 
homogeneous equation L( V) = 0. The other homogeneous solution grows exponentially as 
8- f 00. If HO is defined as the symmetric and finite solution of L(V)= Y i ,  it is easily shown that 

where 

b = 3 k l + 4 + 0 - ' (  -?)'I +y)'2 - 2 ) ' 3 ) - f O P 1 ( 4 K 3  + K 4 - k  K 5  + K ,  - K g )  
U 0 - 2  L5 - 2  - 8 y2(71-72)+ 8 0 (Ki-K2+Ks), 

f= - 3 + 0 - '  (471 9 - 9 7 2 ) + 2 0 -  ' ( Y K 3  + K 4 - k  K5 + K 7 - K 8 )  

+" - 2  
8 0 72(7 1 -72) -yn-  '(K1- KZ + K 6 ) .  

H ( l ) = $ e Y ; +  r,, H@)=$r,, 

The first term on the right-hand side corresponds to a constant phase shift of order a in y0. Thus 
requiring that the maximum shall be located at O = O  to all orders yields b = O .  The second term 
violates the uniformity of the expansion (secular term) and we must have a=O. Finally, the third 
term only modifies the definition of a and must be prescribed to vanish to give unique values for 
c2 and k l .  This gives 

r, = - f fY , ' .  (59) 

For a more refined grid we may assume that the increments are of order a instead of a1 /2 .  In this 
case the discretization errors will first appear in the equations for Yl and U1 and only cause 
a modification of k l .  We shall not go into details but merely state that when the grid increments 
are restored into (51), the resulting expression is valid also in this case. 
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4.4. Higher-order terms 

Provided sufficient terms from the Taylor series expansion are retained in (34) and (39 ,  the 
expansion can be carried out to any order, although the arithmetic becomes unbearable. It is 
easily realized that only terms of even derivatives will enter the counterparts of (42) and (43). For 
product terms the sum of the derivatives of each factor has to be even. We may then recursively 
obtain equations of the form 

n + 2  

where a?) and a?) are functions of c(,+ 1) and k,. This equation can be handled in the same manner 
as (53). Solutions Y. that vanish at infinity can thus be found for all n. Formally, the total solution 
for Y will become a power series in &. We note that the a,-coefficients stem exclusively from the 
linear parts of the equations. Thus requiring these coefficients to be zero must correspond to some 
dominant balance between linear terms. Since the solutions have the form of power series in &, 
the behaviour at the outskirts of the soliton will be 

which means that the linear terms have to dominate at infinity. Substituting the above expres- 
sions into the linearized versions of (9) and (lo), we find 

fP(1  - + a K Z ) = K 2 ,  B =  - Q K - 2 ,  (62) 
where 

n=- 2 sinh ( y  ) . 
K=lsinh($), A x  At 

Exploiting this relation and invoking the power series directly in the equations corresponding to 
(34) and (35) will simplify the arithmetic to some extent. Still, we have no intention of calculating 
the higher x .  Neither will we attempt to derive bounds on the higher-order coefficients, thereby 
leaving the question of convergence open. Anyway, one limitation of the present theory has now 
become apparent. The whole approach depends on the convergence of the Taylor series expan- 
sion in (34) and (35). Hence we must require that kAx cos I), kAy sin I) and kcAt be less than the 
radius of convergence of the Taylor series belonging to &. This radius equals nJ(2a). For larger 
grid increments a discrete soliton, defined through an analytical interpolant, may still exist, but it 
cannot be found by the present procedure. 

4.5. VerlJcation and comparison with simulation 

In the present subsection it is more convenient to describe the solitary waves in terms of the 
total wave height A instead of the perturbation parameter a. We will also introduce the 
renormalized quantities 3, t^ and 4, which are defined at the beginning of Section 2, and confine the 
discussion to two-dimensional cases. The exact solution will be denoted by &) for the analytical 
(non-discrete) as well as the discrete case. Correspondingly, tjcO) and $(1) denote the two lowest 
levels of approximation. Naturally, the perturbation expansion described in Sections 4.1-4.3 is 
applicable also to the analytical case, just by putting Ax = A t  = 0. 

The zeroth-order approximation to a soliton of height A is defined as 

q(o, = A &(a e= &)(a -co,  c=  1 ++A.  (64) 
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Correspondingly, the first-order approximation is given by 

tjcl, = a ro(e) - f a’f r,(e)’, e = (1 + akl ) J ( a ) ( a  - c t ) ,  c = 1 + ~ a + c 2 a 2 ,  (65) 

where a ( A )  is a solution of 

The above definitions imply that the height of the soliton becomes correct whereas the length, 
shape and speed will display deviations. 

A = a - i  fa’. (66) 

Letting Ax7 At+O, we find by some simple manipulations that 

= 1 + + A  - + 0 ( A  3 ), (67) 
which is consistent with the result of Reference 19. In Figure 1 we have compared the analytical 
tico, and tj(l,  with the ‘exact’ soliton solution t j ( e )  of the set (3) and (4). This solution is obtained by 
accurate numerical integration as described in Reference 11. Naturally, a similar procedure of 
solution is not available for the discrete case. Even though A =0.5 is a large amplitude and clearly 
outside the validity range of the Boussinesq equations, both approximations agree well with f l (e , .  

To confirm the validity of the perturbation expansion in the discrete case, we have compared 
qc0, and tjcl, with solutions of the difference equations (9) and (10) that are assumed to be solitons. 
These solutions are generated by evolution from initial conditions. The corresponding analytical 
case is thoroughly analysed by the inverse scattering technique.2’ If the leading pulse that evolves 
reaches a permanent state, we accept this as a soliton solution. In the computer calculations the 
exponentially decaying head and tail of the soliton have to be truncated, and care must be taken 
to avoid this influencing the solution. When a soliton solution of (3) and (4) is used as initial 
conditions, we find that the amplitude A changes slowly in time. Meanwhile a trough and 
a dispersive tail evolve. In Figure 2 we have displayed A ( f )  for A.  = A(0) =0.1 and A .  = A(0)  =0.3. 
Both functions clearly seem to approach a finite limit as f-too. The fluctuations, which are 
particularly noticeable for A.  =0.3, are due to the spline interpolation used to find A(t*). Such an 
interpolation is sensitive to the location of the maximum relative to the nearest grid point. In 
Figure 3 we have compared the calculated wave profiles with the various soliton solutions. The 
agreement between the discrete solution and tjcl, is nearly perfect. These results strongly support 
the relevance of the perturbation solution. 

When the correction terms are retained ( v =  l), we still get a noticeable decrease in amplitude 
relative to Ao.  This is partly due to the initial conditions, which are not corrected. Anyway, the 

0 2 4 6 8 

3s 

Figure 1. Wave profiles for AX=Af=O and A=0.5:  long dashes, exact solution of the differential equations; 
full line, first-order solution short dashes, zeroth-order solution (tico,) 
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Figure 2. Wave height, A as function of time when (9) and (10) are solved with an ‘exact’ solitary wave solution as initial 
state: (a) Ao=O.l, A,f=1.5, Af=O.5; (b) A,=0.3,  A i= l .O ,  Ai=0.3  
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Figure 3. Wave profiles. The crosses correspond to values of the surface elevation at the grid points, the full line and the 
short dashes to the discrete e(,,, and tjtl1 respectively and the long dashes to the exact soliton solution of the differential 
equations. The location of the origin has no relevance. (a) Ao=O.l, A9=1.S, At^=O.S, f=lOOO; (b) Ao=0.3, A,f= 1.0, 

AE=0.3, f=300  

crucial point is that the wave profile which eventually evolves is much closer to the exact one than 
for v = 0. This is illustrated in Figure 4 which displays profiles for the same set of parameters as 
Figure 3 (a). The improvement of the numerical solution (crosses) is substantial. TFie deviation 
between the discrete solution and qcl, is still small, but noticeably larger than in the previous 
cases. Other comparisons have revealed that the accuracy of the perturbation solution becomes 
poorer when the correction terms are nearly equal to the dispersion terms. A moderate reduction 
of the grid increments causes ticl, and the discrete solution to once again coincide almost exactly, 
as shown in Figure 5. 

4.6. Three-dimensional solutions 

In computer calculations, solitons of oblique orientation relative to the grid axes generally 
must be treated as fully three-dimensional waves. It is possible to simulate only a finite length of 
the crest and some non-trivial conditions have to be applied at the lateral boundaries. The 



684 G. PEDERSEN 

0 5 10 15 20 25 

? 

Figure 4. Wave profile for v =  1 and the same grid increments as in Figure 3(a) 

0 5 10 15 20 25 0 5 10 15 20 25 

P ? 

Figure 5. Wave profiles at f=  10oO for Ao=O.l, Lw = 1.0 and Af=0.2: (a) v =  1; (b) v=O. The interpretation of the lines and 
crosses is as in Figure 3 

outcome of such calculations may be influenced at least as much by these conditions as by the 
difference discretization itself. Thus the question of the existence of oblique solitons cannot easily 
be answered through studies of the evolution from initial conditions alone. We may state that 
whereas the discrete perturbation solution made conclusions concerning the 2D case firmer, more 
general and easier to reach, a proper discussion of the 3D solitons might rely mainly on the 
closed-form solution. A special case is given by tan $ = Ax/Ay, for which the discrete equations (3) 
and (4) reduce to their two-dimensional form with Ax cos $ as the new space increment. 

There are no noticeable differences between the cases $ = 0 and t,b #O as far as the perturbation 
expansion is concerned. Therefore it is likely that oblique soliton solutions also exist and are 
closely approximated by flCl,. Still, we will report on a single oblique soliton solution of (9) 
and (10). Even though we have chosen one of the simplest cases possible, a proper description will 
be rather long and rich in details concerning the physics. Therefore we leave the discussion of the 
simulation for the Appendix. The final result of the calculation corresponds to a soliton defined 
by A = 0.0865 and $ = 30.6", discretized on a grid with increments Ax = 15, Ay = 2.5 and At =03 
without correction terms. As shown in Figure 6, the agreement between the perturbative 
representation and the 'exact discrete' solution is again excellent. In Figure 7 we have compared 
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Figure 6. Cross-sections parallel to the x-axis of an oblique solitary wave for $ = 30.6". The notation is as in Figure 3 

0 2 4 6 8 1 0 1 2 1 4  

j: cos * 
Figure 7. Soliton profiles for $ = 30". The units on the co-ordinate axis correspond to dimensionless length along the 
direction of wave advance. Full line. for u =  1; short dashes, for v=O, M==Af=  1.5, A9= 1 9  long dashes, exact 

solution of the differential equations 

the approximate discrete solutions ff(l) ,  with and without correction terms, with the full analytical 
solution f f ( e )  for a slightly larger amplitude and a different discretization. The improvement due to 
the correction term ( v =  1) is apparent but will be more pronounced for smaller amplitudes and 
less coarse grids. 

4.7. Asymmetric difference representations 

The use of upwind differences for convective terms or any sort of explicitness in the time 
stepping will violate the symmetry of the difference equations. Generally, implicit equations such 
as (9) and (10) must be solved by some iterative technique. This may, at least in principle, 
introduce asymmetry. The effect of upwinding or iteration will often be numerical dissipation, 
which makes the existence of permanent wave-forms unlikely. However, neither the Boussinesq 
equations (3) and (4) nor their numerical counterparts are exactly energy-conserving and solitary 
waves do still exist. In view of this the question of the existence of solitons for weakly asymmetric 
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cases calls for a more careful discussion. Besides, it would be instructive to see how the 
perturbation scheme from the previous sections eventually fails. 

In Reference 11 the continuity equation (9) is solved by pointwise iteration. If only one iteration 
is used, this method corresponds to an explicit representation of the non-linear term yielding an 
error of order aAt. Even though this error is comparatively small, it causes a noticeable growth in 
amplitude which rapidly makes the results worthless. Even the application of two iterations yield 
a very small, but observable, amplification which indicates that no permanent wave-form evolves. 
This is demonstrated in Figure 8 which also shows that the use of four iterations gives no 
apparent growth for the displayed time interval (f<3000). The use of n iterations will give 
second-order accuracy provided n >  1, but will also introduce an error of order At2"+' in (34) 
which corresponds to a term of order in (42). One implication is that we have to expand in 
half-powers of a, even though the half-powers less than n will vanish. Another is that at stage n +f 
we obtain an equation 

u Y,+ 1/21 = 4( yo, GI+ 1/23 k"- 1/21 + F9 (68) 

where q is a quadratic function of y0 and F is an odd function in the sense that F ( 8 ) =  -F( -0). 
The odd term stems from the O(a"+"2) term in the counterpart of (42) which involves an odd 
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Figure 8. Time histories for the maximum wave height when pointwise iteration is used. The grid increments are 
A9 = A€= 1.0 for all cases 
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number of derivations. However, no solution of (68) can vanish at both 8 = + 00 and 8= - 00 

unless the right-hand side is even in 0. As a consequence the perturbation expansion breaks down. 
To prove the statement concerning (68), we multiply both sides by Yb, integrate from 8= - 00 to 
O =  + 00, apply integration by parts to the left-hand side and finally invoke equation (48) to 
obtain 

r + m  

For non-zero F this equation can be satisfied only if 

at 0 = 00 or 0 = - co. We may conclude that the soliton solution is violated for any finite number 
of iterations. Still, if n is large, the higher-order imperfection in the expansion will be noticeable 
only for extremely large times. For the present pointwise iteration scheme the growth in 
amplitude is so weak that even n=2 will suffice in most cases. However, for the calculations on 
steady ship wave patterns in Reference 11 the effect of using only two iterations was noticeable 
and n was increased to n = 5. The actual calculations involved slow energy exchange between 
(near-) solitons and were carried out for large time intervals. 

From the above discussion it also follows that upwind differences will ruin the solitary wave 
solution. This is not the case for line-by-line iterations as described in References 11, 19 and 20, 
which do not introduce odd error terms. The use of any kind of smoothing will, on the other hand, 
introduce damping, which again may distort the soliton solution. 

5. CONCLUSIONS 

By applying perturbation expansions to the difference equations (9) and (lo), we have established 
formal power series solutions corresponding to the cnoidal and the solitary wave. For the solitary 
wave the validity of the approach has been demonstrated by comparison between a two-term 
approximation and the full (or presumably exact) solution, although no rigorous proof of 
convergence is given. The full solution is obtained by accurate numerical integration for the 
differential equations and by time evolution of a steady permanent wave-form in the discrete case. 
We conclude that discrete solitary waves do exist. 

Quantitatively, the perturbation solution shows that the phase speed becomes accurate 
regardless of the discretization and sometimes even of the consistency of the numerical method. 
As a consequence the propagation speed of solitary waves cannot be used for the validation of 
numerical methods. The discrete closed-form solution also reveals that the inclusion of simple 
correction terms improves the accuracy substantially for coarse grids. This is confirmed by 
computer calculations. Particularly useful is the information the series solution gives on the 
accuracy of representations of solitons that are oblique in the sense that the direction of wave 
advance does not coincide with any of the grid axes. A proper investigation of the existence and 
accuracy of such discrete waves would be extremely difficult without access to ‘handmade’ 
solutions of the difference equations. 

The accurate representation of the second harmonic of a cnoidal wave requires a refined grid 
mesh. This result is confined to small Ursell numbers; for moderate and high Ursell numbers the 
behaviour will probably be as for solitary waves. 

The methods used are immediately applicable to any symmetric and homogeneous difference 
or element discretization. By symmetric we mean that all error terms are of even order in the grid 
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increments. On the other hand, if the symmetry is violated by iterative equation solvers, 
upwinding, predictor-corrector representations, etc., the perturbation expansion collapses. This 
is demonstrated for a case involving pointwise iteration. It is also shown that the absence of 
a perfect solitary wave solution is of no consequence unless the number of iterations is very small. 
Generally, the acceptable level for damping of the ‘imperfect solitons’ depends on the other time 
scales of the actual problem. Anyway, the question of the existence or damping rates of 
near-solitons should always be considered when studying the development of steady state 
solutions or related problems. 

APPENDIX: A SIMULATION WITH AN OBLIQUE WAVE 

Owing to increased CPU time and storage demands, it is always a heavier task to perform good 
test simulations in two than in one space dimension. In the present work this aspect is 
accentuated through the need for long evolution scales and restrictions concerning the truncation 
of the exponentially decaying tails of the soliton. Even more important, maybe, is the increased 
complexity of the dynamics of a crest in three dimensions. As will be discussed below, non-linear 
refraction effects may confuse the results as well as make the boundary value problems ill-posed. 

A computational domain is defined by 2,(t) < 2 < i , ( t )  + L and 0 < 9 < B. At 3 = 0 we specify 
6 and the normal derivative of 9 according to the analytical soliton solution of amplitude A.  and 
incidence I)o. For small t^ we also specify the wave at f=f0. To keep the crest within the 
calculation window, we have introduced the position go as a time-dependent function that 
increases with a multiple of A2 whenever needed. At j = B  we apply the radiation condition that 
has been previously used in Reference 11. 

We must expect that both A and I) will be slowly varying functions of 9 and f. Our hope is that 
the solution will reach a permanent state for f+cc and that this steady solution will display 
a domain close to j =  B where the wave characteristics do not vary noticeably with 9. The 
amplitude A is found for each grid row by spline interpolation as in the two-dimensional case. 
Applying a polynomial least-squares fit to the locations of the maxima in each row, we then 
extract values for the orientation I). As will be apparent, the calculated I) will be much more 
sensitive to interpolation errors than A. This is mainly due to the lesser accuracy for the location 
of the maximum points. Since the accuracy will depend on the crest location relative to the 
nearest grid lines, the values for A and $ will display nearly periodic fluctuations in 9 and f. 

The appropriate choices for B, L and the time of integration call for a careful discussion. If we 
invoke the concept of rays, we may define a total time of propagation according to the length of 
the ray sections confined within 0 < 9 < B. If we assume that the variations of 1(1 and A are small, 
this time, i.e. the time available for evolution towards a steady state, becomes t,=Bcot($,)/c. For 
similar amplitudes and grid increments, t ,  should be as large as the integration times used in 
Section 4.5. The value oft, gives an indication as to the size of B and, consequently, of L, but it will 
not determine the time of integration. It is shown in the literature” 2 6 - 2 9  that a soliton-like crest 
is subjected to non-linear refraction effects in the form of perturbations on A and I). These 
perturbations propagate laterally along characteristics, C+ and C- with approximate speeds 
U +  = c tan I) + , / ( A / 3 )  and U - = c tan I) - , / ( A / 3 )  respectively. Thus, as long as c tan $ > ,/(A/3), 
all perturbations are swept in the positive y-direction and leave the computational domain at 
9 = B. The time of integration then has to be larger than t ,  = B / U -  =- t,. If, on the other hand, 
U -  < 0, disturbances from the interior and the radiation condition may propagate in the negative 
y-direction along C- and violate the input condition at 9=0. A stationary pattern may of course 
still evolve, but the opposite is also conceivable. Anyway, much effort and care have to be devoted 
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Figure 9. (a) Amplitude and (b) inclination as functions of j at different instants: short dashes, f=540,  long dashes, 

f= 1080; full line, f= 1820,2080 

to the construction of boundary conditions as well as interpretations of the results. Also, the 
integration times have to be very large. 

We will avoid the confusing case U-<O by choosing t,h0=300 and Ao=O.l. The grid in- 
crements are A 2  = 1.5, A9 = 2.5, A? = 0.5 and the size of the domain is given by B = 550, L = 375. 
Wave heights A and inclinations II/ are shown as functions of j for selected times f=540, 1080, 
1820, 2080 in Figure 9. For the first two instants we notice a refraction pattern moving towards 
j? = B. In spite of the persistent oscillations for t,h, it seems clear that a stationary crest evolves and 
that we have negligible spatial variations for 400 < j? < 500, say. The cross-section at j? = 500 and 
f=2080 is displayed in Figure 6. 
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